Heavy quark momentum diffusion from lattice QCD

Anthony Francis

Based on Phys.Rev. D92 (2015) 11, 116003 in collaboration with: O. Kaczmarek, M. Laine, T. Neuhaus and H. Ohno

RBRC Workshop on Lattice Gauge Theories 2016

Brookhaven. 09. March 2016

Outline

Introduction and motivation

Transport and dissociation in HICs Spectral functions from lattice correlators Reconstruction methods Charmonium spectral functions

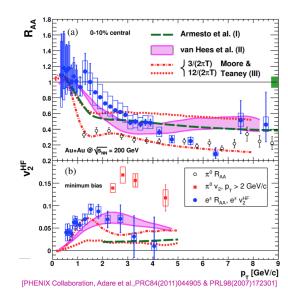
Heavy quark diffusion in the continuum limit of quenched QCD

Measurements
Continuum limit
Spectral function reconstruction
Estimation of κ

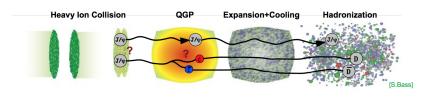
Conclusions

Transport and dissociation in HICs

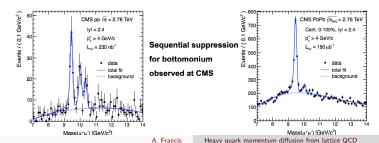
- ► Transport coefficients enter the hydro/transport evolution of the system
- ► Usually determined by matching different models to experiment (e.g. in *R*_{AA})
- ▶ Ab initio determination?⇒ Lattice QCD



Transport and dissociation in HICs



- ▶ (Heavy) quarkonium is produced in the early stage of the collision
- ▶ Depending on its **dissociation temperature**
 - remains as bound state for the whole evolution
 - releases its constituents into the plasma



Spectral functions from lattice correlators

- ▶ The (real-time) information on transport coefficients and dissociation temperatures is encoded in spectral functions $\rho_{\mu\nu}(\omega, \vec{p}, T)$
- Connection to lattice:

$$G_{\mu\nu}(\tau,\vec{p},T) = \int_0^\infty \frac{d\omega}{\pi} \, \rho_{\mu\nu}(\omega,\vec{p},T) \, \frac{\cosh(\omega(\tau-\beta/2))}{\sinh(\omega\beta/2)}$$

with the mixed representation correlator:

$$\begin{split} G_{\mu\nu}(\tau,\vec{p},T) &= \sum_{\vec{x}} G_{\mu\nu}(\tau,\vec{x},T) \, e^{i\vec{p}\vec{x}} \\ G_{\mu\nu}(\tau,\vec{x},T) &= \left\langle \left(\bar{\psi}(\tau,\vec{x})\Gamma_{\mu}\psi(\tau,\vec{x})\right) \left(\bar{\psi}(0,\vec{0})\Gamma_{\nu}\psi(0,\vec{0})\right)^{\dagger} \right\rangle \end{split}$$

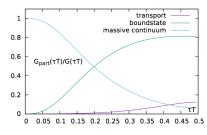
Transport coefficient: Kubo formula and the SPF:

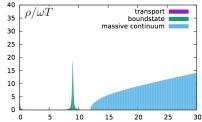
$$D \sim \lim_{\omega \to 0} \frac{\rho_{ii}(\omega, \vec{p} = 0, T)}{\omega T}$$

Dissociation: disappearance of bound state peaks in the SPF

Spectral functions from lattice correlators

- ▶ The inverse transform from $G(\tau)$ to $\rho(\omega)$ is a (numerically) ill-posed problem
 - Systematics of the reconstruction algorithm?
- ► The Euclidean lattice correlator is largely insensitive to the detailed properties of the SPF line shape
 - Statements beyond the area underneath it?



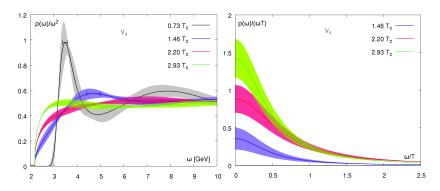


Goal: Reconstruct the SPF from the lattice data

- 1. Maximum Entropy Method (MEM)
 - ▶ Most probable SPF given data, errors and default model
 - Dependence on default model? Systematics due to algorithm (basis functions)?
- 2. Reconstruction via fit ansatz
 - ▶ SPF from fitting a phenomenological model to data
 - Model dependence?
- 3. Backus Gilbert Method (BGM)
 - ightharpoonup Compute a smeared or filtered SPF in the local vicinity of some ω in a model independent way
 - ▶ How local is it? How close to the true SPF is the result?

Example: Charmonium spectral functions

- For charmonium both transport and dissociation was studied in [H.T. Ding, A. F., O. Kaczmarek, F. Karsch, H. Satz, W. Soeldner, 1204.494]
 - ▶ large, isotropic, quenched QCD ensembles
 - MEM reconstruction
- ▶ Dissociation of J/Ψ and η_c around 1.5 T_c
- ▶ Diffusion $2\pi TD \sim 1...3$



Heavy quark diffusion in the continuum limit of quenched QCD

- ▶ It is difficult to extract the transport from the full (vector) correlator
 - ▶ Difficulty to perform the lattice calculation for (very) heavy quarks
 - Insensitivity of the correlator to the low ω region
 - Signal gets mixed up with bound state dissociation
- ▶ Is there perhaps an exclusive correlator for heavy quark diffusion?

Heavy quark diffusion in the continuum limit of quenched QCD

▶ Using Heavy Quark Effective Theory, the force felt by a heavy quark as it propagates through a gluon plasma can be related to a colour-electric correlator [S. Caron-Huot, M.Laine, G. D. Moore, 0901.1195], [J. Casalderrey-Solana, D. Teaney, 0605199]

$$G_{\rm E}(\tau) \equiv -\frac{1}{3} \sum_{i=1}^{3} \frac{\left\langle {\rm ReTr} \left[\textit{U}(\frac{1}{T};\tau) \, \textit{gE}_{i}(\tau,\vec{0}) \, \textit{U}(\tau;0) \, \textit{gE}_{i}(0,\vec{0}) \right] \right\rangle}{\left\langle {\rm ReTr} \left[\textit{U}(\frac{1}{T};0) \right] \right\rangle}$$

where gE_i denotes the colour-electric field, T the temperature, and $U(\tau_2; \tau_1)$ a Wilson line in the Euclidean time direction.

► The lattice discretization of this correlator is not unique, we implement this correlator as:

Heavy quark diffusion in the continuum limit of quenched QCD

▶ The heavy quark momentum diffusion coefficient is linked to this correlator via its spectral function $\rho_E(\omega)$ and the Kubo formula:

$$\kappa = \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega} \ , \qquad D = \frac{2T^2}{\kappa}$$

- ▶ **Hope:** There is a strong effect on the correlator due to κ and the analytic continuation is straight forward, once accurate lattice data is gathered.
- ► In the following: All data is normalized via the LO correlator [S. Caron-Huot, M.Laine, G. D. Moore, 0901.1195]

$$G_{\text{norm}}(\tau) \equiv \pi^2 T^4 \left[\frac{\cos^2(\pi \tau T)}{\sin^4(\pi \tau T)} + \frac{1}{3 \sin^2(\pi \tau T)} \right]$$

Measurements - Ensemble setup

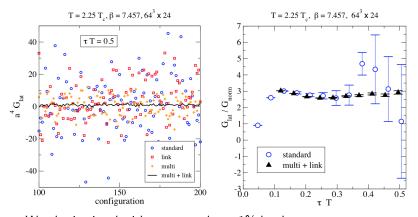
- ► **Goal:** Give a "minimal" practical answer to heavy quark diffusion using lattice techniques with extrapolation to the continuum
- ▶ **Setup:** Quenched lattice QCD, employing the standard Wilson gauge action, at a temperature corresponding to about $\simeq 1.5 T_c$

β_0	$N_{\rm s}^3 \times N_{\tau}$	confs	$T\sqrt{t_0}^{(\mathrm{imp})}$	$T/T_{\rm c} _{t_0}^{\rm (imp)}$	$T\sqrt{t_0}^{\rm (clov)}$	$T/T_{\rm c} _{t_0}^{\rm (clov)}$	Tr_0	$T/T_{\rm c} _{r_0}$
6.872	$64^{3} \times 16$	172	0.3770	1.52	0.3805	1.53	1.116	1.50
7.035	$80^3 \times 20$	180	0.3693	1.48	0.3739	1.50	1.086	1.46
7.192	$96^3 \times 24$	160	0.3728	1.50	0.3790	1.52	1.089	1.46
7.544	$144^3 \times 36$	693	0.3791	1.52	0.3896	1.57	1.089	1.46
7.793	$192^3\times48$	223	0.3816	1.53	0.3955	1.59	1.084	1.45

- ▶ Scale setting is performed using $T\sqrt{t_0}$ [1503.05652]
- ▶ Aspect ratio $N_s/N_\tau=4$ is kept fixed

Measurements - Algorithmic improvement

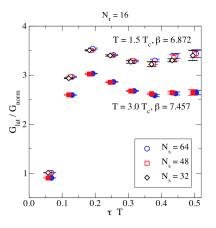
- ▶ Use the multilevel algorithm with $N_{multi} = 1000$ per configuration for the electric field insertion
- ▶ Use semi-analytical link integration for the straight link lines



 \Rightarrow We obtain signal with errors at the \simeq 1%-level [1109.3941]

Measurements - Volume effects

lacktriangle We checked the volume dependence of our results for $N_{ au}=16$



 \Rightarrow Volume effects are below our statistical precision [1109.3941]

Measurements - Discretization effects

In order to reduce discretization effects, the imaginary-time separations are tree-level improved via

$$G_{cont.}^{LO}(\overline{TT}) = G_{lat}^{LO}(\tau T)$$
unimproved data
$$Tree-level improved$$

$$T = 1.5T_{e}, \beta = 6.872, 48^{3} \times 16$$

$$T = 1.5T_{e}, \beta = 6.872, 48^{3} \times 16$$

$$T = 1.5T_{e}, \beta = 7.192, 64^{3} \times 24$$

$$T = 3.0T_{e}, \beta = 7.457, 48^{3} \times 16$$

$$T = 3.0T_{e}, \beta = 7.457, 48^{3} \times 16$$

$$T = 3.0T_{e}, \beta = 7.793, 64^{3} \times 24$$

$$T = 3.0T_{e}, \beta = 7.793, 64^{3} \times 24$$

$$T = 3.0T_{e}, \beta = 7.793, 64^{3} \times 24$$

$$T = 3.0T_{e}, \beta = 7.793, 64^{3} \times 24$$

$$T = 3.0T_{e}, \beta = 7.793, 64^{3} \times 24$$

$$T = 3.0T_{e}, \beta = 7.793, 64^{3} \times 24$$

⇒ Discretization effects are highly reduced [1109.3941]

Continuum limit - Renormalization

➤ To carry out a continuum limit the lattice correlators need to be multiplied by a renormalization factor:

$$\mathcal{G}_{ ext{E,cont}}(au) \equiv \mathcal{Z}_{ ext{E}} \mathcal{G}_{ ext{E,latt}}(au)$$

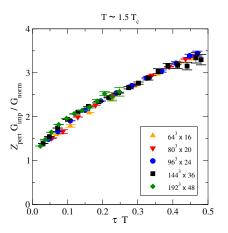
► A 1-loop perturbative computation yields [C. Christensen, M. Laine, 1601.01573]

$$\mathcal{Z}_{\mathrm{E,pert}} = 1 + 0.079 \times \frac{6}{\beta_0} + \mathcal{O}\Big(0.079 \times \frac{6}{\beta_0}\Big)^2$$

where $\beta_0 \equiv 6/g_0^2$ is the coupling of the plaquette term in the Wilson action

► The small coefficient of the 1-loop term suggests perturbative renormalization should give a reasonable approximation to the full non-perturbative result ⇒ Non-perturbative check in the future?

Continuum limit - Data

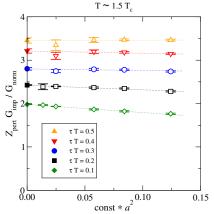


- ▶ After renormalization the lattice spacing dependence seems mild
- ▶ Signal deteriorates for the $N_{\tau}=48$ ensemble around $\tau T=0.3$

[1508.04543]

Continuum limit - Extrapolation

- ▶ Results on all 4 or 5 values of N_{τ} are interpolated to the values of τT determined by the $N_{\tau} = 48$ ensemble
- **Extrapolation** to the continuum is carried out for fixed τT in a^2



[1508.04543], Note: correlator data and covariances are provided

Spectral function reconstruction

▶ Connecting the lattice data and the spectral function we have:

$$G_{
m E}(au) = \int_0^\infty rac{{
m d}\omega}{\pi} \,
ho_{
m E}(\omega) \, rac{\cosh[\omega(rac{eta}{2}- au)]}{\sinh[rac{\omegaeta}{2}]}$$

- ▶ Large variations of $\rho_{\rm E}$ may lead to only small changes of $G_{\rm E}$.
- lacktriangle Constrain the allowed form of $ho_{
 m E}$ from general considerations
- ► Idea:
 - Fix the functional form of $\rho_{\rm E}$ at small ($\omega \ll T$) and large frequencies ($\omega \gg T$)
 - Impose theoretically motivated interpolations between the two regimes

SPF reconstruction - IR asymptotics

In the IR regime ($\omega \ll T$), the heavy quark momentum diffusion coefficient can be defined as

$$\kappa \equiv \lim_{\omega \to 0} \frac{2T\rho_{\rm E}(\omega)}{\omega}$$

- \blacktriangleright The approach to this limit appears to be smooth suggesting that $\rho_{\rm E}$ has no transport peak but is rather a monotonically increasing function
- (checked in resummed PT, numerically in classical lattice theory and at strong coupling [0901.1195], [0902.2856], [hep-ph/0605199], [hep-th/0612143])
- ▶ Define the infrared asymptotics through the simplest consistent form

$$\phi_{
m IR}(\omega) \equiv \frac{\kappa \omega}{2T}$$

SPF reconstruction - UV asymptotics

▶ In the UV regime ($\omega \gg T$) the SPF can be computed via perturbation theory, one finds:

$$ho_{
m E}(\omega) \stackrel{\omega \geqslant {
m T}}{=} \phi_{
m UV}^{ ext{(a)}}(\omega) \left[1 + \mathcal{O}ig(rac{1}{\lnig(\omega/\Lambda_{
m ar{MS}}ig)}ig)
ight]$$

where we defined the asymptotic form:

$$\phi_{\mathrm{UV}}^{(\mathsf{a})}(\omega) \, \equiv \, \frac{g^2(\bar{\mu}_\omega) C_F \, \omega^3}{6\pi} \, , \quad \bar{\mu}_\omega \equiv \max(\omega, \pi T)$$

SPF reconstruction - Interpolating the IR and the UV

- Between the two regimes we interpolate using different combinations of polynomials:
 - ▶ model 1:

$$\rho_{\rm E}^{(1\mu i)}(\omega) \equiv \left[1 + \sum_{n=1}^{n_{\rm max}} c_n \mathsf{e}_n^{(\mu)}(y)\right] \left[\phi_{\rm IR}(\omega) + \phi_{\rm UV}^{(i)}(\omega)\right]$$

model 2 (more rapid crossover from IR to UV):

$$\rho_{\mathrm{E}}^{(2\mu i)}(\omega) \; \equiv \; \Big[1 + \sum_{n=1}^{n_{\mathrm{max}}} c_n e_n^{(\mu)}(y) \Big] \sqrt{\big[\phi_{\mathrm{IR}}(\omega)\big]^2 + \big[\phi_{\mathrm{UV}}^{(i)}(\omega)\big]^2}$$

model 3 (simple 2-parameter Ansatz):

$$\rho_{\rm E}^{(3i)}(\omega) \; \equiv \; \max\left[\phi_{\rm IR}(\omega), c \, \phi_{\rm UV}^{(i)}(\omega)\right]$$

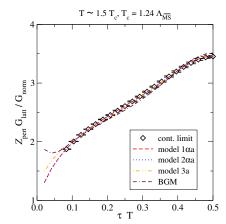
 \Rightarrow We can now fit these SPF parametrizations to the data and extract κ

SPF reconstruction - Backus-Gilbert method

- ▶ As parametrization-independent cross-check, we also perform an analysis using the Backus-Gilbert method.
- ▶ In the BGM the goal is not to reconstruct the spectral function itself, but rather an averaged version thereof given a resolution function determined from the precision of the data.

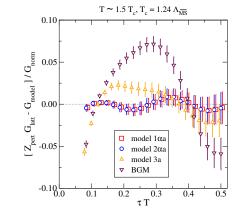
$$ho_{
m BGM}(\omega) = \int d\omega' \delta_{
m resolution}(\omega,\omega')
ho_{
m E}(\omega')$$

- Bonus: If the true SPF is flat, the BGM result is close to the true SPF, even for wide resolution functions
- ▶ Caveat: If the width of the resolution function is wide, the BGM result does not necessarily yield a small χ^2
- \Rightarrow The method can only be used as cross-check and not stand-alone. It is complimentary to a fit or MEM analysis.



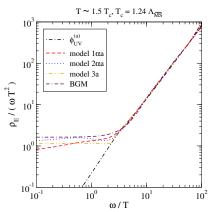
 \Rightarrow At first glance all models provide an excellent description of the data

Estimation of κ - Relative deviation



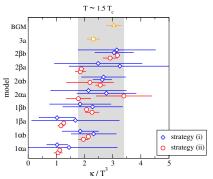
- \Rightarrow Forming the difference $Z_{
 m pert}G_{
 m lat}-G_{
 m model}/G_{
 m norm}$
 - ► The BGM leads to the largest deviations
 - ▶ Model 3 works best at large τT
 - ▶ Model 1 and 2 give consistently good results for all τT

Estimation of κ - Spectral functions



 \Rightarrow The spectral functions share the same qualitative features, especially in the intercept $\omega \to 0$ region.

Estimation of κ - Final results



⇒ Given the spread of our results we estimate:

$$\kappa/T^3 = 1.8...3.4$$
 so that $DT = 0.59...1.1$

$$au_{
m kin} = rac{1}{\eta_{
m D}} = (1.8 \dots 3.4) \left(rac{T_c}{T}
ight)^2 \! \left(rac{ extit{M}}{1.5 \; {
m GeV}}
ight) {
m fm/c}$$

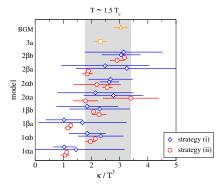
Conclusions

What was done:

- ightharpoonup Heavy quark momentum diffusion was computed at $\simeq 1.5 \, T_c$
- ► A result in the continuum limit of quenched QCD by extrapolating a large set of imaginary-time correlators was obtained
- ightharpoonup Robust results for κ were determined using SPF parametrizations and the Backus-Gilbert method

What was learnt:

- $\kappa/T^3 = 1.8...3.4$ strongly constrains the magnitude of the heavy quark momentum diffusion coefficient
- ► The estimated kinetic equilibration time indicates heavy quarks equilibrate almost as fast as light quarks



Thanks for listening